# Documentation

### Formulas

This article describes different ways to apply formulas to your data.

Dundas BI lets you apply mathematical formulas to data by entering small expressions into the formula bar, similar to a spreadsheet program. This article lists the functions that are available for use in formula expressions.

Formula visualizations allow you to use data from one or more visualizations to produce a new metric set in a new visualization.

The DISTANCE function computes the as-the-crow-flies distance between a source and destination identified by latitude and longitude.

The Clustering function uses the K-Means algorithm to split data points into clusters based on similarity of the measures provided.

The Rank Value function returns the value found at the specified position, either starting from the highest or the lowest value.

The AVG function computes the mean (or simple average) of a set of input values.

The Bollinger Bands function was developed by John Bollinger. It computes a pair of data bands that envelops a simple moving average of the input value series.

The Cumulative Total function computes the cumulative total (or running sum) of a set of input values.

The Exponential Moving Average function computes the average of a set of input values over a specified number of time periods.

The Historical Volatility function calculates the volatility of a set of input data values, such as stock prices over a period of time.

The Median function computes the median (e.g. middle) value from a set of input values.

The Mode function finds the value (or values) that is repeated more often than any other in a value series.

The Moving Average function computes the average of a set of input values over a specified number of time periods. The smaller the number of time periods, the faster the moving average responds to changes in the input values.

The Moving Average Envelopes function computes a pair of data bands that envelops a moving average of the input data values.

The Percent of Total function returns the percentage of each value in the input series out of the total sum of the values in the input series.

The Sum function calculates the total sum for any number of input value series.

The Trend and Forecasting function calculates a regression line or line of best fit. When applied to a time series, it can forecast future values.

The Weighted Moving Average function computes the average of a set of input values over a specified number of time periods.

The Exponential Smoothing functions apply an exponentially-decreasing weight to historical data in order to forecast future values based on emerging trends.

Dundas Data Visualization, Inc.
500-250 Ferrand Drive